Potential Divider Exercises

Consider a potential divider (voltage divider) made from a pair of resistors

The resistors have values R1 and R2

The input voltage (V_{in}) is from $0\,V$ and across both resistors as shown

The output voltage (V_{out}) is measured across R2

Question 1

The input voltage is set to V_{in} = 12 V. R1 and R2 are both 220 Ω .

What is the output voltage?

Question 2

The input voltage is set to $V_{in} = 9 \text{ V}$. R1 = 470Ω and R2 = 390Ω .

What is the output voltage?

Question 3

The input to a potential divider is 9V and the output voltage needs to be 5V.

If R2 = $100 \text{ k}\Omega$, what is the value of R1?

Question 4

The input to a potential divider is 20 V and the output voltage needs to be 12 V.

If R2 = 15Ω , what is the value of R1?

Question 5

The input to a potential divider is 1.5 V and the output voltage needs to be 0.7 V.

If R1 = $24,000 \Omega$, what is the value of R2?

Question 6

The input to a potential divider is 6V and the output voltage needs to be 3.8V.

If R1 = 1800Ω , what is the value of R2?

Question 7

A potential divider has two resistors, R1 = $2k\Omega$ and R2 = $1k\Omega$.

If $V_{out} = 3 V$, what is the input voltage, V_{in} ?

Question 8

A potential divider has two resistors, R1 = $27 k\Omega$ and R2 = $91 k\Omega$.

If $V_{out} = 30 V$, what is the input voltage, V_{in} ?

Question 9

A potential divider has an input voltage of V_{in} = 12 V and needs to have an output voltage, V_{out} = 5 V.

What pair of resistors can be used to make the potential divider?

Question 10

A potential divider has an input voltage of V_{in} = 230 V and needs to have an output voltage, V_{out} = 12 V.

What pair of resistors can be used to make the potential divider?

Potential Divider Answers

Question 1

The input voltage is set to V_{in} = 12 V. R1 and R2 are both 220 Ω .

What is the output voltage?

```
V_{out} = 12 \times 220 / (220 + 220) = 6 V or 1:1 ratio so 12/2 = 6 V
```

Question 2

The input voltage is set to $V_{in} = 9 \text{ V}$. R1 = 470Ω and R2 = 390Ω .

What is the output voltage?

```
V_{out} = 9 \times 390 / (470 + 390) = 4.1 V ratios are not obvious
```

Question 3

The input to a potential divider is 9V and the output voltage needs to be 5V.

If R2 = $100 \text{ k}\Omega$, what is the value of R1?

If V1 is the voltage across R1 then V1 = 4V and V1: V_{out} = 4:5

R2 = $100 \text{ k}\Omega$ and so R1 = $\frac{4}{5}$ of $100 \text{ k}\Omega$ = $80 \text{ k}\Omega$

Question 4

The input to a potential divider is 20 V and the output voltage needs to be 12 V.

If R2 = 15Ω , what is the value of R1?

```
V1 = 8V. The ratio V1:Vout = 8:12 = 2:3 R2 = 15\Omega gives R1 = \frac{2}{3} of 15\Omega = 10\Omega
```

Question 5

The input to a potential divider is 1.5 V and the output voltage needs to be 0.7 V.

If R1 = $24,000 \Omega$, what is the value of R2?

```
V1 = 0.8 V so ratio R1:R2 = 8:7 R2 = \frac{7}{8} of 24 kΩ = 21 kΩ
```

Question 6

The input to a potential divider is 6V and the output voltage needs to be 3.8V.

If R1 = 1800Ω , what is the value of R2?

```
V1 = 6.0 - 3.8 = 2.2 V so the ratio R1:R2 = 2.2:3.8 R2 = (3.8/2.2) x 1800 \Omega = 3100 \Omega
```

Question 7

A potential divider has two resistors, R1 = $2k\Omega$ and R2 = $1k\Omega$.

If $V_{out} = 3 V$, what is the input voltage, V_{in} ?

```
V1:V_{out} = R1:R2 = 2:1 V_{out} = 3 V gives V1 = 6 V and therefore V_{in} = 9 V
```

Question 8

A potential divider has two resistors, R1 = $27 \text{ k}\Omega$ and R2 = $91 \text{ k}\Omega$.

If $V_{out} = 30 \text{ V}$, what is the input voltage, V_{in} ?

```
V1:V_{out} = V1:30 = R1:R2 = 27:91 V1 = (27/91) \times 30 = 8.9 \text{ V} and therefore V_{in} = 38.9 \text{ V}
```

Alternatively
$$V_{in} = V_{out} x (R1 + R2) / R2 = 30 x (27 + 91) / 91 = 38.9 V$$

Question 9

A potential divider has an input voltage of V_{in} = 12 V and needs to have an output voltage, V_{out} = 5 V.

What pair of resistors can be used to make the potential divider?

```
V1 = 7V and V_{out} = 5V meaning R1:R2 = 7:5
```

Any pair with this ratio e.g. R1 = $7 k\Omega$ and R2 = $5 k\Omega$

Question 10

A potential divider has an input voltage of V_{in} = 230 V and needs to have an output voltage, V_{out} = 12 V.

What pair of resistors can be used to make the potential divider?

```
V1 = 230 - 12 = 218 V meaning R1:R2 = 218:12 Use R1 = 218 kΩ and R2 = 12 \text{ k}\Omega
```

Any combination with the right ratio will work